
Access Control Lists v1.11 – Aaron Balchunas

* * *

All original material copyright © 2007 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

1

- Access Control Lists -

Access Control Lists (ACLs)

Access control lists (ACLs) can be used for two purposes on Cisco devices:

• To filter traffic

• To identify traffic

Access lists are a set of rules, organized in a rule table. Each rule or line in

an access-list provides a condition, either permit or deny:

• When using an access-list to filter traffic, a permit statement is used to

“allow” traffic, while a deny statement is used to “block” traffic.

• Similarly, when using an access list to identify traffic, a permit

statement is used to “include” traffic, while a deny statement states

that the traffic should “not” be included. It is thus interpreted as a

true/false statement.

Filtering traffic is the primary use of access lists. However, there are several

instances when it is necessary to identify traffic using ACLs, including:

• Identifying interesting traffic to bring up an ISDN link or VPN tunnel

• Identifying routes to filter or allow in routing updates

• Identifying traffic for QoS purposes

When filtering traffic, access lists are applied on interfaces. As a packet

passes through a router, the top line of the rule list is checked first, and the

router continues to go down the list until a match is made. Once a match is

made, the packet is either permitted or denied.

There is an implicit ‘deny all’ at the end of all access lists. You don’t create

it, and you can’t delete it. Thus, access lists that contain only deny

statements will prevent all traffic.

Access lists are applied either inbound (packets received on an interface,

before routing), or outbound (packets leaving an interface, after routing).

Only one access list per interface, per protocol, per direction is allowed.

More specific and frequently used rules should be at the top of your access

list, to optimize CPU usage. New entries to an access list are added to the

bottom. You cannot remove individual lines from a numbered access list.

You must delete and recreate the access to truly make changes. Best practice

is to use a text editor to manage your access-lists.

Access Control Lists v1.11 – Aaron Balchunas

* * *

All original material copyright © 2007 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

2

Types of Access Lists

There are two categories of access lists: numbered and named.

Numbered access lists are broken down into several ranges, each dedicated

to a specific protocol:

1–99 IP standard access list

100-199 IP extended access list

200-299 Protocol type-code access list

300-399 DECnet access list

400-499 XNS standard access list

500-599 XNS extended access list

600-699 Appletalk access list

700-799 48-bit MAC address access list

800-899 IPX standard access list

900-999 IPX extended access list

1000-1099 IPX SAP access list

1100-1199 Extended 48-bit MAC address access list

1200-1299 IPX summary address access list

1300-1999 IP standard access list (expanded range)

2000-2699 IP extended access list (expanded range

Remember, individual lines cannot be removed from a numbered access list.

The entire access list must be deleted and recreated. All new entries to a

numbered access list are added to the bottom.

Named access lists provide a bit more flexibility. Descriptive names can be

used to identify your access-lists. Additionally, individual lines can be

removed from a named access-list. However, like numbered lists, all new

entries are still added to the bottom of the access list.

There are two common types of named access lists:

• IP standard named access lists

• IP extended named access lists

Configuration of both numbered and named access-lists is covered later in

this section.

Access Control Lists v1.11 – Aaron Balchunas

* * *

All original material copyright © 2007 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

3

Wild Card Masks

IP access-lists use wildcard masks to determine two things:

1. Which part of an address must match exactly

2. Which part of an address can match any number

This is as opposed to a subnet mask, which tells us what part of an address

is the network (subnet), and what part of an address is the host. Wildcard

masks look like inversed subnet masks.

Consider the following address and wildcard mask:

Address: 172.16.0.0

Wild Card Mask: 0.0.255.255

The above would match any address that begins “172.16.” The last two

octets could be anything. How do I know this?

Two Golden Rules of Access Lists:

1. If a bit is set to 0 in a wild-card mask, the corresponding bit in the

address must be matched exactly.

2. If a bit is set to 1 in a wild-card mask, the corresponding bit in the

address can match any number. In other words, we “don’t care”

what number it matches.

To see this more clearly, we’ll convert both the address and the wildcard

mask into binary:

Address: 10101100.00010000.00000000.00000000

Wild Card Mask: 00000000.00000000.11111111.11111111

Any 0 bits in the wildcard mask, indicates that the corresponding bits in the

address must be matched exactly. Thus, looking at the above example, we

must exactly match the following in the first two octets:

 10101100.00010000 = 172.16

Any 1 bits in the wildcard mask indicates that the corresponding bits can be

anything. Thus, the last two octets can be any number, and it will still match

this access-list entry.

Access Control Lists v1.11 – Aaron Balchunas

* * *

All original material copyright © 2007 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

4

Wild Card Masks (continued)

If wanted to match a specific address with a wildcard mask (we’ll use an

example of 172.16.1.1), how would we do it?

Address: 172.16.1.1

Wild Card Mask: 0.0.0.0

Written out in binary, that looks like:

Address: 10101100.00010000.00000001.00000001

Wild Card Mask: 00000000.00000000.00000000.00000000

Remember what a wildcard mask is doing. A 0 indicates it must match

exactly, a 1 indicates it can match anything. The above wildcard mask has

all bits set to 0, which means we must match all four octets exactly.

There are actually two ways we can match a host:

• Using a wildcard mask with all bits set to 0 – 172.16.1.1 0.0.0.0

• Using the keyword “host” – host 172.16.1.1

How would we match all addresses with a wildcard mask?

Address: 0.0.0.0

Wild Card Mask: 255.255.255.255

Written out in binary, that looks like:

Address: 00000000.00000000.00000000.00000000

Wild Card Mask: 11111111.11111111.11111111.11111111

Notice that the above wildcard mask has all bits set to 1. Thus, each bit can

match anything – resulting in the above address and wildcard mask matching

all possible addresses.

There are actually two ways we can match all addresses:

• Using a wildcard mask with all bits set to 1 – 0.0.0.0 255.255.255.255

• Using the keyword “any” – any

Access Control Lists v1.11 – Aaron Balchunas

* * *

All original material copyright © 2007 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

5

Standard IP Access List

access-list [1-99] [permit | deny] [source address] [wildcard mask] [log]

Standard IP access-lists are based upon the source host or network IP

address, and should be placed closest to the destination network.

Consider the following example:

In order to block network 172.18.0.0 from accessing the 172.16.0.0 network,

we would create the following access-list on Router A:

 Router(config)# access-list 10 deny 172.18.0.0 0.0.255.255

 Router(config)# access-list 10 permit any

Notice the wildcard mask of 0.0.255.255 on the first line. This will match

(deny) all hosts on the 172.18.x.x network.

The second line uses a keyword of any, which will match (permit) any other

address. Remember that you must have at least one permit statement in your

access list.

To apply this access list, we would configure the following on Router A:

 Router(config)# int s0

 Router(config-if)# ip access-group 10 in

To view all IP access lists configured on the router:

 Router# show ip access-list

To view what interface an access-list is configured on:

Router# show ip interface

Router# show running-config

Access Control Lists v1.11 – Aaron Balchunas

* * *

All original material copyright © 2007 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

6

Extended IP Access List

access-list [100-199] [permit | deny] [protocol] [source address] [wildcard

mask] [destination address] [wildcard mask] [operator [port]] [log]

Extended IP access-lists block based upon the source IP address, destination

IP address, and TCP or UDP port number. Extended access-lists should be

placed closest to the source network.

Consider the following example:

Assume there is a webserver on the 172.16.x.x network with an IP address

of 172.16.10.10. In order to block network 172.18.0.0 from accessing

anything on the 172.16.0.0 network, EXCEPT for the HTTP port on the web

server, we would create the following access-list on Router B:

Router(config)# access-list 101 permit tcp 172.18.0.0 0.0.255.255 host 172.16.10.10 eq 80

Router(config)# access-list 101 deny ip 172.18.0.0 0.0.255.255 172.16.0.0 0.0.255.255

Router(config)# access-list 101 permit ip any any

The first line allows the 172.18.x.x network access only to port 80 on the

web server. The second line blocks 172.18.x.x from accessing anything else

on the 172.16.x.x network. The third line allows 172.18.x.x access to

anything else.

We could have identified the web server in one of two ways:

Router(config)# access-list 101 permit tcp 172.18.0.0 0.0.255.255 host 172.16.10.10 eq 80

Router(config)# access-list 101 permit tcp 172.18.0.0 0.0.255.255 172.16.10.10 0.0.0.0 eq 80

To apply this access list, we would configure the following on Router B:

 Router(config)# int e0

 Router(config-if)# ip access-group 101 in

Access Control Lists v1.11 – Aaron Balchunas

* * *

All original material copyright © 2007 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

7

Extended IP Access List Port Operators

In the preceding example, we identified TCP port 80 on a specific host use

the following syntax:

Router(config)# access-list 101 permit tcp 172.18.0.0 0.0.255.255 host 172.16.10.10 eq 80

We accomplished this using an operator of eq, which is short for equals.

Thus, we are identifying host 172.16.10.10 with a port that equals 80.

We can use several other operators for port numbers:

eq Matches a specific port

gt Matches all ports greater than the port specified

lt Matches all ports less than the port specified

neq Matches all ports except for the port specified

range Match a specific inclusive range of ports

The following will match all ports greater than 100:

Router(config)# access-list 101 permit tcp any host 172.16.10.10 gt 100

The following will match all ports less than 1024:

Router(config)# access-list 101 permit tcp any host 172.16.10.10 lt 1024

The following will match all ports that do not equal 443:

Router(config)# access-list 101 permit tcp any host 172.16.10.10 neq 443

The following will match all ports between 80 and 88:

Router(config)# access-list 101 permit tcp any host 172.16.10.10 range 80 88

Access Control Lists v1.11 – Aaron Balchunas

* * *

All original material copyright © 2007 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

8

Access List Logging

Consider again the following example:

Assume there is a webserver on the 172.16.x.x network with an IP address

of 172.16.10.10.

We wish to keep track of the number of packets permitted or denied by each

line of an access-list. Access-lists have a built-in logging mechanism for

such a purpose:

Router(config)# access-list 101 permit tcp 172.18.0.0 0.0.255.255 host 172.16.10.10 eq 80 log

Router(config)# access-list 101 deny ip 172.18.0.0 0.0.255.255 172.16.0.0 0.0.255.255 log

Router(config)# access-list 101 permit ip any any log

Notice we added an additional keyword log to each line of the access-list.

When viewing an access-list using the following command:

 Router# show access-list 101

We will now have a counter on each line of the access-list, indicating the

number of packets that were permitted or denied by that line. This

information can be sent to a syslog server:

 Router(config)# logging on

 Router(config)# logging 172.18.1.50

The logging on command enables logging. The second logging command

points to a syslog host at 172.18.1.50.

We can include more detailed logging information, including the source

MAC address of the packet, and what interface that packet was received on.

To accomplish this, use the log-input argument:

 Router(config)# access-list 101 permit ip any any log-input

Access Control Lists v1.11 – Aaron Balchunas

* * *

All original material copyright © 2007 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

9

ICMP Access List

Consider this scenario. You’ve been asked to block anyone from the

172.18.x.x network from “pinging” anyone on the 172.16.x.x network. You

want to allow everything else, including all other ICMP packets.

The specific ICMP port that a “ping” uses is echo. To block specific ICMP

parameters, use an extended IP access list. On Router B, we would

configure:

Router(config)# access-list 102 deny icmp 172.18.0.0 0.0.255.255 172.16.0.0 0.0.255.255 echo

Router(config)# access-list 102 permit icmp 172.18.0.0 0.0.255.255 172.16.0.0 0.0.255.255

Router(config)# access-list 102 permit ip any any

The first line blocks only ICMP echo requests (pings). The second line

allows all other ICMP traffic. The third line allows all other IP traffic.

Don’t forget to apply it to an interface on Router B:

 Router(config)# int e0

 Router(config-if)# ip access-group 102 in

Untrusted networks (such as the Internet) should usually be blocked from

pinging an outside router or any internal hosts:

Router(config)# access-list 102 deny icmp any any

Router(config)# access-list 102 permit ip any any

Router(config)# interface s0

Router(config-if)# ip access-group 102 in

The above access-list completed disables ICMP on the serial interface.

However, this would effectively disable ICMP traffic in both directions on

the router. Any replies to pings initiated by the Internal LAN would be

blocked on the way back in.

Access Control Lists v1.11 – Aaron Balchunas

* * *

All original material copyright © 2007 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

10

Telnet Access List

We can create access lists to restrict telnet access to our router. For this

example, we’ll create an access list that prevents anyone from the evil

172.18.x.x network from telneting into Router A, but allow all other

networks telnet access.

First, we create the access-list on Router A:

Router(config)# access-list 50 deny 172.18.0.0 0.0.255.255

Router(config)# access-list 50 permit any

The first line blocks the 172.18.x.x network. The second line allows all other

networks.

To apply it to Router A’s telnet ports:

Router(config)# line vty 0 4

Router(config-line)# access-class 50 in

Access Control Lists v1.11 – Aaron Balchunas

* * *

All original material copyright © 2007 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

11

Named Access Lists

Named access lists provide us with two advantages over numbered access

lists. First, we can apply an identifiable name to an access list, for

documentation purposes. Second, we can remove individual lines in a named

access-list, which is not possible with numbered access lists.

Please note, though we can remove individual lines in a named access list,

we cannot insert individual lines into that named access list. New entries are

always placed at the bottom of a named access list.

To create a standard named access list, the syntax would be as follows:

 Router(config)# ip access-list standard NAME

 Router(config-std-nacl)# deny 172.18.0.0 0.0.255.255

 Router(config-std-nacl)# permit any

To create an extended named access list, the syntax would be as follows:

 Router(config)# ip access-list extended NAME

 Router(config-ext-nacl)# permit tcp 172.18.0.0 0.0.255.255 host 172.16.10.10 eq 80

 Router(config-ext-nacl)# deny ip 172.18.0.0 0.0.255.255 172.16.0.0 0.0.255.255

 Router(config-ext-nacl)# permit ip any any

Notice that the actual configuration of the named access-list is performed in

a separate router “mode”:

 Router(config-std-nacl)#

 Router(config-ext-nacl)#

Access Control Lists v1.11 – Aaron Balchunas

* * *

All original material copyright © 2007 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

12

Time-Based Access-Lists

Beginning with IOS version 12.0, access-lists can be based on the time and

the day of the week.

The first step to creating a time-based access-list, is to create a time-range:

Router(config)# time-range BLOCKHTTP

The above command creates a time-range named BLOCKHTTP. Next, we

must either specify an absolute time, or a periodic time:

Router(config)# time-range BLOCKHTTP

Router(config-time-range)# absolute start 08:00 23 May 2006 end 20:00 26 May 2006

Router(config)# time-range BLOCKHTTP

Router(config-time-range)# periodic weekdays 18:00 to 23:00

Notice the use of military time. The first time-range sets an absolute time

that will start from May 23, 2006 at 8:00 a.m., and will end on May 26,

2006 at 8:00 p.m.

The second time-range sets a periodic time that is always in effect on

weekdays from 6:00 p.m. to 11:00 p.m.

Only one absolute time statement is allowed per time-range, but multiple

periodic time statements are allowed.

After we establish our time-range, we must reference it in an access-list:

Router(config)# access-list 102 deny any any eq 80 time-range BLOCKHTTP

Router(config)# access-list 102 permit ip any any

Notice the time-range argument at the end of the access-list line. This will

result in HTTP traffic being blocked, but only during the time specified in

the time-range.

Source:

(http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120t/120t1/timerang.htm)

Access Control Lists v1.11 – Aaron Balchunas

* * *

All original material copyright © 2007 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

13

Advanced Wildcard Masks

Earlier in this section, we discussed the basics of wildcard masks. The

examples given previously matched one of three things:

• A specific host

• A specific octet(s)

• All possible hosts

It is also possible to match groups or ranges of hosts with wildcard masks.

For example, assume we wanted a standard access-list that denied the

following hosts:

172.16.1.4

172.16.1.5

172.16.1.6

172.16.1.7

We could create an access-list with four separate lines:

Router(config)# access-list 10 deny 172.16.1.4 0.0.0.0

Router(config)# access-list 10 deny 172.16.1.5 0.0.0.0

Router(config)# access-list 10 deny 172.16.1.6 0.0.0.0

Router(config)# access-list 10 deny 172.16.1.7 0.0.0.0

However, it is also possible to match all four addresses in one line:

Router(config)# access-list 10 deny 172.16.1.4 0.0.0.3

How do I know this is correct? Let’s write out the above four addresses, and

my wildcard mask in binary:

172.16.1.4: 10101100.00010000.00000001.00000100

172.16.1.5: 10101100.00010000.00000001.00000101

172.16.1.6: 10101100.00010000.00000001.00000110

172.16.1.7: 10101100.00010000.00000001.00000111

Wild Card Mask: 00000000.00000000.00000000.00000011

Notice that the first 30 bits of each of the four addresses are identical. Each

begin “10101100.00010000.00000001.000001”. Since those bits must match

exactly, the first 30 bits of our wildcard mask are set to 0.

Access Control Lists v1.11 – Aaron Balchunas

* * *

All original material copyright © 2007 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

14

Advanced Wildcard Masks (continued)

Notice now that the only bits that are different between the four addresses

are the last two bits. Not only that, but we use every computation of those

last two bits: 00, 01, 10, 11.

Thus, since those last two bits can be anything, the last two bits of our

wildcard mask are set to 1.

The resulting access-list line:

Router(config)# access-list 10 deny 172.16.1.4 0.0.0.3

We also could have determined the appropriate address and wildcard mask

by using AND/XOR logic.

To determine the address, we perform a logical AND operation:

1. If all bits in a column are set to 0, the corresponding address bit is 0

2. If all bits in a column are set to 1, the corresponding address bit is 1

3. If the bits in a column are a mix of 0’s and 1’s, the corresponding

address bit is a 0.

Observe:

172.16.1.4: 10101100.00010000.00000001.00000100

172.16.1.5: 10101100.00010000.00000001.00000101

172.16.1.6: 10101100.00010000.00000001.00000110

172.16.1.7: 10101100.00010000.00000001.00000111

Result: 10101100.00010000.00000001.00000100

Our resulting address is 172.16.1.4. This gets us half of what we need.

Access Control Lists v1.11 – Aaron Balchunas

* * *

All original material copyright © 2007 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

15

Advanced Wildcard Masks (continued)

To determine the wildcard mask, we perform a logical XOR (exclusive OR)

operation:

1. If all bits in a column are set to 0, the corresponding wildcard bit is 0

2. If all bits in a column are set to 1, the corresponding wildcard bit is 0

3. If the bits in a column are a mix of 0’s and 1’s, the corresponding

wildcard bit is a 1.

Observe:

172.16.1.4: 10101100.00010000.00000001.00000100

172.16.1.5: 10101100.00010000.00000001.00000101

172.16.1.6: 10101100.00010000.00000001.00000110

172.16.1.7: 10101100.00010000.00000001.00000111

Result: 00000000.00000000.00000000.00000011

Our resulting wildcard mask is 0.0.0.3. Put together, we have:

Router(config)# access-list 10 deny 172.16.1.4 0.0.0.3

Please Note: We can determine the number of addresses a wildcard mask

will match by using a simple formula:

2
n

Where “n” is the number of bits set to 1 in the wildcard mask. In the above

example, we have two bits set to 1, which matches exactly four addresses

(2
2
= 4).

There will be occasions when we cannot match a range of addresses in one

line. For example, if we wanted to deny 172.16.1.4-6, instead of 172.16.1.4-

7, we would need two lines:

Router(config)# access-list 10 permit 172.16.1.7 0.0.0.0

Router(config)# access-list 10 deny 172.16.1.4 0.0.0.3

If we didn’t include the first line, the second line would have denied the

172.16.1.7 address. Always remember to use the above formula (2
n
) to

ensure your wildcard mask doesn’t match more addresses than you intended

(often called overlap).

Access Control Lists v1.11 – Aaron Balchunas

* * *

All original material copyright © 2007 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

16

Advanced Wildcard Masks (continued)

Two more examples. How would we deny all odd addresses on the

10.1.1.x/24 subnet in one access-list line?

Router(config)# access-list 10 deny 10.1.1.1 0.0.0.254

Written in binary:

10.1.1.1: 00001010.00000001.00000001.00000001

Wild Card Mask: 00000000.00000000.00000000.11111110

What would the result of the above wildcard mask be?

1. The first three octets must match exactly.

2. The last bit in the fourth octet must match exactly. Because we set this

bit to 1 in our address, every number this matches will be odd.

3. All other bits in the fourth octet can match any number.

Simple, right? How would we deny all even addresses on the 10.1.1.x/24

subnet in one access-list line?

Router(config)# access-list 10 deny 10.1.1.0 0.0.0.254

Written in binary:

10.1.1.0: 00001010.00000001.00000001.00000000

Wild Card Mask: 00000000.00000000.00000000.11111110

What would the result of the above wildcard mask be?

4. The first three octets must match exactly.

5. The last bit in the fourth octet must match exactly. Because we set this

bit to 0 in our address, every number this matches will be even.

6. All other bits in the fourth octet can match any number.

