- Intrusion Detection Systems -

Basics of IDS

The term *intrusion* refers to nearly any variety of network attack, including the *misuse, abuse, and unauthorized access* of resources. The generic term *Intrusion Detection* refers to a device that monitors traffic patterns or signatures to determine whether an attack is occurring.

Two types of devices can provide real-time monitoring, by capturing and analyzing packets:

- **IDS (Intrusion Detection System)** – intended to react *after* a network attack has been detected.
- **IPS (Intrusion Prevention System)** – intended to react *before* the network attack compromises a system.

IDS/IPS technology is implemented using network sensors, which perform the real-time monitoring. If multiple-sensors are employed, a centralized management station is used to monitor/control all sensors. Sensors generally come in two forms: hardware appliances or software.

A key consideration is the *placement* of the sensors, to maximize efficiency and coverage. Common places to install a sensor would include:

- *Outside* the firewall (the *untrusted* side)
- *Behind* the firewall (the *trusted* side)
- On each network segment
- On critical hosts/servers (a software sensor)

IDS sensors can be placed *inline*, which forces all traffic to traverse *through* the sensor. This allows the IDS to monitor all traffic; however, the sensor also introduces an additional bottleneck and point-of-failure on the network.

Capturing and monitoring all packets on a network segment can be difficult, especially in a switched environment, as a switch will intelligently forward frames to only the appropriate port(s). This is opposed to a hub, which forwards all frames out all ports.

Higher-end switches support a feature called *port mirroring* (or *spanning*). This allows the traffic of one or more ports to be *copied* or *mirrored* to a destination port. This allows an IDS sensor to be placed on *only* the mirrored port, and still monitor all traffic on the switched segment.
IDS Response

IDS technologies require an accurate profile or database of what constitutes normal traffic, and what is considered anomalous traffic. This profile can be created one of several ways:

- **Manually** - by the network/security administrator.
- **Dynamically** – by allowing the IDS to create a baseline and then tune itself.
- **Externally** – by pointing the IDS to a centralized or public database of well-known vulnerabilities and attacks.

Anomalous traffic should trigger a response (usually called an alarm). This response can take on many forms:

- **Notify** – sends an alarm to a centralized management device, email-address, phone number, etc.
- **Log** – stores information about alarm in a local log file or database.
- **Drop** – drops any offending packets.
- **Reset** – sends the TCP flag RST to an attacking host, to terminate the connection.
- **Block** – automatically blocks any new incoming connections from a suspected attacker.
- **Ignore** – performs no action.

An incomplete or inaccurate policy can lead to inconsistent alarms:

- **True Positive** – an alarm generated for a legitimate attack.
- **True Negative** – legitimate traffic that does not set off an alarm.
- **False Positive** – an alarm generated for legitimate traffic.
- **False Negative** – a legitimate attack that does not set off an alarm.

Obviously, a well-tuned IDS should minimize the number of false negatives. However, a large number of false positives can also be dangerous, as it may lead to a lax response from the network/security administrator.
IDS Products

Snort (http://www.snort.org/) is the most popular open-source IDS product available. It supports both Linux and Windows platforms. Snort is predominantly a command-line based interface, though a GUI front-end has been developed.

Common commercial IDS products include:
- Cisco Secure IDS
- ISS RealSecure
- Symantec IDS
- Checkpoint SmartDefense
- Computer Associates eTrust

Common IDS databases and resources:
- Common Vulnerabilities and Exposures (CVE) - http://cve.mitre.org/