
TCP and UDP v1.21 – Aaron Balchunas

* * *

All original material copyright © 2012 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

1

 - TCP and UDP -

Transport Layer Protocols

The Transport layer (OSI Layer-4) does not actually transport data,

despite its name. Instead, this layer is responsible for the reliable transfer of

data, by ensuring that data arrives at its destination error-free and in order.

The Transport layer is referred to as the Host-to-Host layer in the

Department of Defense (DoD) reference model.

Transport layer communication falls under two categories:

• Connection-oriented – requires that a connection with specific

agreed-upon parameters be established before data is sent.

• Connectionless – requires no connection before data is sent.

Connection-oriented protocols provide several important services:

• Connection establishment – connections are established, maintained,

and ultimately terminated between devices.

• Segmentation and sequencing – data is segmented into smaller

pieces for transport. Each segment is assigned a sequence number, so

that the receiving device can reassemble the data on arrival.

• Acknowledgments – receipt of data is confirmed through the use of

acknowledgments. If a segment is lost, data can be retransmitted to

guarantee delivery.

• Flow control (or windowing) – data transfer rate is negotiated to

prevent congestion.

The TCP/IP protocol suite incorporates two Transport layer protocols:

• Transmission Control Protocol (TCP) – connection-oriented

• User Datagram Protocol (UDP) - connectionless

Both TCP and UDP provide a mechanism to differentiate applications

running on the same host, through the use of port numbers. When a host

receives a packet, the port number tells the transport layer which higher-

layer application to hand the packet off to.

Both TCP and UDP will be covered in detail in this guide. Please note that

the best resource on the Internet for TCP/UDP information is the exemplary

TCP/IP Guide, found here: http://www.tcpipguide.com/free/index.htm

TCP and UDP v1.21 – Aaron Balchunas

* * *

All original material copyright © 2012 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

2

Port Numbers and Sockets

Both TCP and UDP provide a mechanism to differentiate applications (or

services) running on the same host, through the use of port numbers. When

a host receives a segment, the port number tells the transport layer which

higher-layer application to hand the packet off to. This allows multiple

network services to operate simultaneously on the same logical address, such

as a web and an email server.

The range for port numbers is 0 – 65535, for both TCP and UDP.

The combination of the IP address and port number (identifying both the

host and service) is referred to as a socket, and is written out as follows:

192.168.60.125:443

Note the colon separating the IP address (192.168.60.125) from the port

number (443).

The first 1024 ports (0-1023) have been reserved for widely-used services,

and are recognized as well-known ports. Below is a table of several

common TCP/UDP ports:

Port Number Transport Protocol Application

20, 21 TCP FTP

22 TCP SSH

23 TCP Telnet

25 TCP SMTP

53 UDP or TCP DNS

80 TCP HTTP

110 TCP POP3

443 TCP SSL

666 TCP Doom

Ports ranging from 1024 – 49151 are referred to as registered ports, and are

allocated by the IANA upon request. Ports ranging from 49152 – 65535

cannot be registered, and are considered dynamic. A client initiating a

connection will randomly choose a port in this range as its source port (for

some operating systems, the dynamic range starts at 1024 and higher).

For a complete list of assigned port numbers, refer to the IANA website:

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml

TCP and UDP v1.21 – Aaron Balchunas

* * *

All original material copyright © 2012 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

3

Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) is a connection-oriented

transport protocol, providing reliable delivery over an Internet Protocol (IP)

network. Together, TCP and IP provide the core functionality for the

TCP/IP or Internet protocol suite.

TCP was originally defined in RFC 675, and initially designed to perform

both Network and Transport layer functions. When this proved to be an

inflexible solution, those functions were separated - with IP providing

Network layer services, and TCP providing Transport layer services. This

separation was formalized in version 4 of TCP, defined in RFC 793.

Because TCP is connection-oriented, parameters must be agreed upon by

both the sending and receiving devices before a connection is established.

Establishing a TCP Connection

TCP employs a three-way handshake to form a connection. Control

messages are passed between the two hosts as the connection is set up:

• HostA sends a SYN (short for synchronize) message to HostB to

initiate a connection.

• HostB responds with an ACK (short for acknowledgement) to

HostA’s SYN message, and sends its own SYN message. The two

messages are combined to form a single SYN+ACK message.

• HostA completes the three-way handshake by sending an ACK to

HostB’s SYN.

The TCP header contains six different flags, including a SYN flag and an

ACK flag. Thus, when a particular type of message needs to be sent, the

appropriate flag is marked as on, or changed from a 0 to a 1. A SYN+ACK

message has both flags set to on (1).

TCP and UDP v1.21 – Aaron Balchunas

* * *

All original material copyright © 2012 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

4

Establishing a TCP Connection (continued)

As the three-way handshake occurs, the sending and receiving hosts will

pass through several states:

A closed state indicates a complete absence of a TCP connection.

Before a host can accept a request for a TCP connection, the host must enter

a listen state, also known as a passive open. For example, a web server will

passively listen on the HTTP port, waiting for incoming connection requests.

A host must listen on each port it wishes to accept connections on.

A host will enter a SYN-sent state once it sends a SYN message to initiate a

connection, also known as an active open. The sending host will remain in

this state as it waits for the remote host’s ACK message.

The receiving host will respond to the SYN message with a SYN+ACK

message, and enter a SYN-received state.

The sending host will respond to the SYN+ACK message with its own ACK

message and enter an Established state. The receiving host will enter an

Established state once it receives this final ACK.

An Established state indicates that data transfer can occur. The

communication becomes bidirectional, regardless of which host initiated

the connection.

TCP can support many simultaneous connections, and must track and

maintain each connection individually. Connections are identified by the

sockets of both the source and destination host, and data specific to each

connection is maintained in a Transmission Control Block (TCB).

(Reference: http://www.tcpipguide.com/free/t_TCPConnectionEstablishmentProcessTheThreeWayHandsh-3.htm)

TCP and UDP v1.21 – Aaron Balchunas

* * *

All original material copyright © 2012 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

5

TCP Segmentation and Sequencing

TCP is a stream-oriented transport protocol. This allows the application

layer to send a continuous stream of unstructured data and rely on TCP to

package the data as segments, regardless of the amount of data.

TCP will not only segment data into smaller pieces for transport, but will

also assign a sequence number to each segment. Note though that this

sequence number identifies the data (bytes) within the segment rather than

the segment itself.

Sequencing serves two critical purposes:

• It allows the receiving host to reassemble the data from multiple

segments in the correct order, upon arrival.

• It allows receipt of data within a segment to be acknowledged, thus

providing a mechanism for dropped segments to be detected and

resent.

When establishing a connection, a host will choose a 32-bit initial sequence

number (ISN). The ISN is chosen from a randomizing timer, to prevent

accidental overlap or predictability.

The receiving host responds to this sequence number with an

acknowledgment number, set to the sequence number + 1. In the above

example, HostB’s acknowledgment number would thus be 1001.

HostB includes an initial sequence number with its SYN message as well –

4500 in the above example. HostA would respond to this sequence number

with an acknowledgement number of 4501.

The TCP header contains both a 32-bit Sequence Number and 32-bit

Acknowledgement Number field.

TCP and UDP v1.21 – Aaron Balchunas

* * *

All original material copyright © 2012 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

6

TCP Sliding Window

Once the TCP connection is established, the sequence numbers are used to

identify the data within the segment. Using the above example again,

HostA’s first byte of data will be assigned a sequence number 1001. Note

that this is HostB’s acknowledgment number, which essentially identifies

which byte the receiving host is expecting next. HostB’s first byte of data

will be assigned a sequence number of 4501.

Note that each individual byte of data is not assigned a sequence number

and acknowledged independently, as this would introduce massive overhead.

Instead, data is sequenced and acknowledged in groups, dictated by the TCP

window size. The window size can never exceed the maximum segment

size (MSS), which is 536 bytes by default.

The TCP window size is dictating by the receiving host, and informs the

sender how many bytes it is permitted to send, before waiting for an

acknowledgement. This window size can be dynamically changed to provide

a measure of flow control, preventing buffer congestion on the receiving

host.

A window size of 0 would instruct the sender to send no further data, usually

indicating significant congestion on the receiving host.

TCP employs a sliding window mechanism. Bytes in a sliding window fall

into one of four categories:

• Bytes that have already been sent and acknowledged.

• Bytes that have been sent, but not acknowledged.

• Bytes that have not yet been sent, but the receiving host is ready for.

• Bytes that have not yet been sent, and the receiving host is not ready

for.

(Reference: http://www.tcpipguide.com/free/t_TCPSlidingWindowAcknowledgmentSystemForDataTranspo-5.htm;

http://docwiki.cisco.com/wiki/Internet_Protocols#Transmission_Control_Protocol_.28TCP.29)

TCP and UDP v1.21 – Aaron Balchunas

* * *

All original material copyright © 2012 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

7

TCP Sliding Window (continued)

Consider the following conceptual example:

 Byte # Category

 1-50 Bytes sent and acknowledged

51-75 Bytes sent and not yet acknowledged TCP

Window 76-100 Bytes not sent, receiving host is ready

 101-200 Bytes not sent, receiving host is not ready

Several determinations can be made:

• The TCP stream is 200 bytes total.

• The TCP window size is 50 bytes total.

• The sending host can immediately send another 25 bytes of data

(bytes 76-100)

Once bytes 51-75 are acknowledged, and bytes 76-100 are sent, the window

will slide down:

 Byte # Category

 1-75 Bytes sent and acknowledged

76-100 Bytes sent and not yet acknowledged TCP

Window 101-125 Bytes not sent, receiving host is ready

 126-200 Bytes not sent, receiving host is not ready

This assumes that that TCP window stays at 50 bytes. Remember that the

window size is dictated by the receiving host (in a 16-bit Window field in

the TCP header), and can be dynamically adjusted.

For efficiency, TCP will generally wait to send a segment until the agreed-

upon TCP window size is full. This may not be acceptable for certain types

of applications, which may not tolerate this latency.

The TCP header provides a PSH (Push) flag to accommodate this, allowing

data to be sent immediately, regardless if the TCP window has been filled.

The PSH flag can be used in conjunction with the URG (Urgent) flag,

which allows specified data to be prioritized over other data. The URG flag

must be used with the Urgent Pointer field, which identifies the last byte of

urgent data, to identify where non-urgent data begins in a segment.

TCP and UDP v1.21 – Aaron Balchunas

* * *

All original material copyright © 2012 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

8

TCP Sliding Window (continued)

How do sequence and acknowledgement numbers fit within the sliding

window concept? Consider the following very basic example, and assume

the TCP connection is already established:

Host BHost A

Seq Num = 1001 50 data bytes

Ack Num = 1051

Seq Num = 1051 50 data bytes

Ack Num = 1101

Window = 25

Seq Num = 1101 25 data bytes

Ack Num = 1126

Recall that during the setup of a TCP connection, the acknowledgement

number was set to the sequence number + 1. However, during data transfer,

the acknowledgement number is used to acknowledge receipt of a group of

data bytes.

In the above example, the initial TCP window size is set to 50 bytes, and the

first byte in the stream is assigned a sequence number of 1001. HostB

acknowledges receipt of these 50 data bytes with an acknowledgement

number of 1051 (for the mathematically disinclined, this is 1001 + 50). ☺

Once acknowledged, HostA then sends another 50 bytes of data, identifying

the first byte with a sequence number of 1051. HostB acknowledges receipt

again, with an ACK number of 1101. However, HostB also adjusts the TCP

window size to 25 bytes, perhaps due to congestion.

HostA’s next segment will thus only contain 25 bytes of data, with a

sequence number of 1101. HostB acknowledges these 25 bytes with an ACK

number of 1126.

Every time a segment is sent, the sending host starts a retransmission

timer, dynamically determined (and adjusted) based on the round-trip time

between the two hosts. If an acknowledgement is not received before the

retransmission timer expires, the segment is resent. This allows TCP to

guarantee delivery, even when segments are lost.

TCP and UDP v1.21 – Aaron Balchunas

* * *

All original material copyright © 2012 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

9

Gracefully Terminating a TCP Connection

A TCP connection will remain established until it is purposely terminated

by either host. The most common reason for connection termination is that

both hosts have finished sending data. The termination process is handled

separately by each host, allowing both hosts to fully complete data transfer

before the connection is terminated.

Hosts can terminate an established TCP connection by sending a message

with the FIN (Finish) flag set:

Once HostA sends the FIN message, it will enter a FIN-Wait-1 state,

waiting for the FIN to be acknowledged.

HostB responds to the FIN with an ACK message, and enters a Close-Wait

state, allowing the local application to finish its processes. HostA receives

the ACK and enters a FIN-Wait-2 state, waiting for HostB to send a FIN

message of its own, indicating it is safe to close the connection.

HostB sends a FIN message to HostA once the application process is

complete, and enters a Last-ACK state.

HostA receives the FIN message and responds with an ACK message.

HostA then enters a Time-Wait state, allowing time for the ACK to be

received by HostB.

HostB receives the ACK message and enters a Closed state.

HostA’s Time-Wait timer expires, and it also enters a Closed state. The

connection is now gracefully terminated.

(Reference: http://www.tcpipguide.com/free/t_TCPConnectionTermination-2.htm)

TCP and UDP v1.21 – Aaron Balchunas

* * *

All original material copyright © 2012 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

10

Less than Graceful TCP Connection Termination

A TCP connection can become half-open, indicating that one host is an

established state while the other is not. Half-open connections can result

from interruption by an intermediary device (such as a firewall), or from a

software or hardware issue.

TCP utilizes the Reset message, using the RST flag, to address half-open

connections. Sending a RST message will force the remote host to reset the

TCP connection and return to a closed state, or return to a passive listen state

if the remote host is a server listening on that port.

There are a few scenarios in which a RST might be sent:

• A host receives a TCP segment from a host that it does not have a

connection with.

• A host receives a segment with an incorrect sequence or

acknowledgement number.

• A host receives a SYN request on a port it is not listening on.

Note on half-open connections: A SYN flood is a common denial-of-

service attack that sends a large number of TCP SYN messages to a host,

while spoofing the source address. The host will respond with an equal

number of SYN+ACK messages, and will wait for the final ACK message

that never comes. This spawns a large amount of half-open connections,

which can prevent the host from responding to legitimate requests.

Modern firewalls can detect SYN flood attacks and minimize the number of

accepted half-open connections.

(Reference: http://www.tcpipguide.com/free/t_TCPConnectionManagementandProblemHandlingtheConnec.htm)

TCP and UDP v1.21 – Aaron Balchunas

* * *

All original material copyright © 2012 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

11

The TCP Header

The TCP header is comprised of 12 fields, and has a minimum size of 160

bits (20 bytes):

Field Length Description

Source Port 16 bits Source TCP Port

Destination Port 16 bits Destination TCP Port

Sequence Number 32 bits Sequence Number

Ack Number 32 bits Acknowledgement Number

Data Offset 4 bits Indicates where the data begins in a TCP segment

Reserved 6 bits Always set to 0

Control Bits 6 bits URG, ACK, PSH, RST, SYN, and FIN flags

Window 16 bits Used for Flow Control

Checksum 16 bits Used for Error-Checking

Urgent Pointer 16 bits Identifies last byte of Urgent traffic

Options Variable

Padding Variable To ensure the TCP header ends at a 32-bit boundary

The 16-bit Source Port field identifies the application service on the

sending host. The 16-bit Destination Port field identifies the application

service on the remote host.

The 32-bit Sequence Number field is used both during connection

establishment, and during data transfer. During connection establishment

(SYN message), an initial sequence number is randomly chosen.

Subsequently, sequence numbers are used to identify data bytes in a stream.

The 32-bit Acknowledgement Number field, as its name suggests, is used

to acknowledge a sequence number. During connection setup, this is set to

the sending host’s initial sequence number + 1. During data transfer, this

value is used to acknowledge receipt of a group of data bytes.

The 4-bit Data Offset field indicates where data begins in a TCP segment,

by identifying the number of 32-bit multiples in the TCP header. A TCP

header must end on a 32-bit boundary.

Following the data offset field is the 6-bit Reserved (for future use) field,

which is always set to zeroes.

TCP and UDP v1.21 – Aaron Balchunas

* * *

All original material copyright © 2012 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

12

The TCP Header (continued)

Field Length Description

Source Port 16 bits Source TCP Port

Destination Port 16 bits Destination TCP Port

Sequence Number 32 bits Sequence Number

Ack Number 32 bits Acknowledgement Number

Data Offset 4 bits Indicates where the data begins in a TCP segment

Reserved 6 bits Always set to 0

Control Bits 6 bits URG, ACK, PSH, RST, SYN, and FIN flags

Window 16 bits Used for Flow Control

Checksum 16 bits Used for Error-Checking

Urgent Pointer 16 bits Identifies last byte of Urgent traffic

Options Variable

Padding Variable To ensure the TCP header ends at a 32-bit boundary

The 6-bit Control Bits field contains six 1-bit flags, in the following order:

• URG (Urgent) – prioritizes specified traffic.

• ACK (Acknowledgment) – acknowledges a SYN or receipt of data.

• PSH (Push) – forces an immediate send even if window is not full.

• RST (Reset) – forcefully terminates an improper connection.

• SYN (Synchronize) – initiates a connection.

• FIN (Finish) – gracefully terminates a connection when there is

further data to send.

The 16-bit Window field identifies the number of data octets that the

receiver is able to accept.

The 16-bit Checksum field is used for error-checking, and is computed

using both the TCP segment and select fields from the IP header. The

receiving host will discard the segment if it fails the checksum calculation.

The 16-bit Urgent Pointer field is used to identify the last byte of

prioritized traffic in a segment, when the URG flag is set.

The variable-length Options field provides additional optional TCP

parameters, outside the scope of this guide.

The variable-length Padding field ensures the TCP header ends on a 32-bit

boundary, and is always set to zeroes.

TCP and UDP v1.21 – Aaron Balchunas

* * *

All original material copyright © 2012 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

13

User Datagram Protocol (UDP)

The User Datagram Protocol (UDP) is a connectionless transport protocol,

and is defined in RFC 768.

UDP, above all, is simple. It provides no three-way handshake, no flow-

control, no sequencing, and no acknowledgment of data receipt. UDP

essentially forwards the segment and takes no further interest.

Thus, UDP is inherently unreliable, especially compared to a connection-

oriented protocol like TCP. However, UDP experiences less latency than

TCP, due to the reduced overhead. This makes UDP ideal for applications

that require speed over reliability. For example, DNS primarily uses UDP as

its transport protocol, though it supports TCP as well.

Like TCP, UDP does provide basic error-checking using a checksum, and

uses port numbers to differentiate applications running on the same host.

The UDP header has only 4 fields:

Field Length Description

Source Port 16 bits Source UDP Port

Destination Port 16 bits Destination UDP Port

Length 16 bits Length of the header and the data

Checksum 16 bits Used for Error-Checking

The following provides a quick comparison of TCP and UDP:

TCP UDP

Connection-oriented Connectionless

Guarantees delivery Does not guarantee delivery

Sends acknowledgments Does not send acknowledgments

Reliable, but slower than UDP Unreliable, but faster than TCP

Segments and sequences data Does not provide sequencing

Resends dropped segments Does not resend dropped segments

Provides flow control Does not provide flow control

Performs CRC on data Also performs CRC on data

Uses port numbers Also uses port numbers

