- Router Components -

Router Memory Components

Cisco routers (and switches) generally contain four types of memory:

- ROM (Read-Only Memory)
- Flash
- NVRAM (Non-Volatile RAM)
- RAM (Random-Access Memory)

ROM contains a **bootstrap** program called **ROM Monitor** (or **ROMmon**). When a router is powered on, the bootstrap runs a hardware diagnostic called **POST** (**Power-On Self Test**).

If POST completes successfully, the bootstrap then attempts to locate and load the Cisco **IOS (Internetwork Operating System)** stored in **Flash memory.** Flash memory *can* be erased or overwritten, thus making the Cisco IOS upgradeable. The Cisco IOS is covered in great detail in other guides.

If the bootstrap *cannot* find the IOS in Flash, a stripped-down version of the IOS that will be loaded from ROM instead. The contents of ROM cannot be altered or erased; the entire ROM chip must be replaced if an upgrade/repair is necessary.

If the bootstrap *does* find the IOS in Flash, it is loaded into RAM and attempts to find a **Startup Configuration** (**startup-config**) file in **NVRAM**. NVRAM is non-volatile, thus its contents will survive a power-cycle.

If the IOS *cannot* find a startup-config file in NVRAM, it will attempt to load a configuration file from a **TFTP** server (this request is **broadcasted** to 255.255.255.255). If no TFTP server responds, the IOS will enter **Initial Configuration Mode**, a series of interactive questions intended for quick configuration of the router.

If the IOS *does* find a startup-config file in NVRAM, this file is loaded into **RAM**, and becomes the **Running Configuration** (**running-config**). RAM is a volatile memory, and thus its contents will be lost if the router is power-cycled.

Router Memory, Quick Reference

The following table details each of the basic types of **router memory**:

<u>Memory</u>	<u>Writable?</u>	<u>Volatile?</u>	Function
ROM	No	No	Stores bootstrap
Flash	Yes	No	Stores IOS
NVRAM	Yes	No	Stores startup-config
RAM	Yes	Yes	Stores running-config

The Router Boot-Process, Quick Reference

The following details the router boot process:

- 1. The router is powered on.
- 2. The bootstrap program (ROMmon) is loaded from ROM.
- 3. The bootstrap runs POST.
- 4. The bootstrap attempts to load the IOS from Flash.
 - a. If the IOS *is not* found in Flash, the bootstrap loads into RAM the basic IOS stored in ROM.
 - b. If the IOS *is* found in Flash, it is loaded into RAM.
- 5. The IOS attempts to load the startup-config file from NVRAM
 - a. If the startup-config *is not* found in NVRAM, the IOS attempts to load a configuration file from TFTP.
 - b. If no TFTP server responds, the router enters Initial Configuration Mode.
 - c. If the startup-config *is* found in NVRAM, it is loaded into RAM.
- 6. The startup-config becomes the running-config in RAM.

Interfaces vs Lines

Cisco devices contain two distinctly different types of ports, **interfaces** and **lines**.

Interfaces connect routers and switches to each other. In other words, traffic is actually routed or switched across interfaces. Examples of interfaces include (but are not limited to):

- Serial interfaces
- Ethernet interfaces
- Fast Ethernet interfaces
- Token Ring interfaces
- ATM interfaces

Interfaces are identified by both the *type* of interface, and the **interface number** (which always begins at "0"). Thus, the first Ethernet interface on a router would be identified as *Ethernet0*.

Certain router families (such as the 3600 series) are modular, and have multiple "slots" for interfaces. Thus, interfaces on these routers are identified by both the **module number** *and* the interface number, formatted as: *module/interface*. Thus, the third Fast Ethernet interface on the first modular slot would be identified as *FastEthernet0/2*.

Lines identify ports that allow us to connect into, and then configure, Cisco devices. The most common examples of lines include:

- Console ports
- Auxiliary ports
- VTY (telnet) ports

Just like interfaces, lines are identified by both the *type* of line, and the line *number* (again, always begins at "0"). Thus, the first console port on a router would be identified as *Console0*.

Using Lines to Configure the IOS

As mentioned previously, three methods (or *lines*) exist to configure Cisco IOS devices:

- Console ports
- Auxiliary ports
- VTY (telnet) ports

Nearly every modern Cisco router or switch includes a **console port**, sometimes labeled on the device simply as *con*. The console port is generally a RJ-45 connector, and requires a **rollover** cable to connect to. The opposite side of the rollover cable connects to a PC's serial port using a serial **terminal adapter**.

From the PC, software such as HyperTerminal is required to make a connection from the local serial port to the router console port. The following settings are necessary for a successful connection:

- Bits per second 9600 baud
- Data bits 8
- Parity *None*
- Stop bits 1
- Flow Control *Hardware*

Some Cisco devices include an **auxiliary port**, in addition to the console port. The auxiliary port can function similarly to a console port, and can be accessed using a rollover cable. Additionally, auxiliary ports support modem commands, thus providing dial-in access to Cisco devices.

Telnet, and now **SSH**, are the most common methods of remote access to routers and switches. The standard edition of the IOS supports up to **5 simultaneous** VTY connections. Enterprise editions of the IOS support up to **255 VTY** connections.

There are two requirements before a router/switch will accept a VTY connection:

- An **IP address** must be configured on an interface
- At least one VTY port must be configured with a **password**